107 research outputs found

    Vision-Based Robotic Grasping of Reels for Automatic Packaging Machines

    Get PDF
    In this work, we present a vision system particularly suited to the automatic recognition of reels in the field of automatic packaging machines. The output of the vision system is used to guide the autonomous grasping of the reels by a robot for a subsequent manipulation task. The proposed solution is built around three different methods to solve the ellipse-detection problem in an image. Such methods leverage standard image processing and mathematical algorithms, which are tailored to the targeted application. An experimental campaign demonstrates the efficacy of the proposed approach, even in the presence of low computational power and limited hardware resources, as in the use-case at hand

    Design of a planar cable-driven parallel robot for non-contact tasks

    Get PDF
    Cable-driven parallel robots offer significant advantages in terms of workspace dimensions and payload capability. Their mechanical structure and transmission system consist of light and extendable cables that can withstand high tensile loads. Cables are wound and unwound by a set of motorized winches, so that the robot workspace dimensions mainly depend on the amount of cable that each drum can store. For this reason, these manipulators are attractive for many industrial tasks to be performed on a large scale, such as handling, pick-and-place, and manufacturing, without a substantial increase in costs and mechanical complexity with respect to a small-scale application. This paper presents the design of a planar overconstrained cable-driven parallel robot for quasi-static non-contact operations on planar vertical surfaces, such as laser engraving, inspection and thermal treatment. The overall mechanical structure of the robot is shown, by focusing on the actuation and guidance systems. A novel concept of the cable guidance system is outlined, which allows for a simple kinematic model to control the manipulator. As an application example, a laser diode is mounted onto the end-effector of a prototype to perform laser engraving on a paper sheet. Observations on the experiments are reported and discussed

    Natural oscillations of underactuated cable-driven parallel robots

    Get PDF
    Underactuated Cable-Driven Parallel Robots (CDPR) employ a number of cables smaller than the degrees of freedom (DoFs) of the end-effector (EE) that they control. As a consequence, the EE is underconstrained and preserves some freedoms even when all actuators are locked, which may lead to undesirable oscillations. This paper proposes a methodology for the computation of the EE natural oscillation frequencies, whose knowledge has proven to be convenient for control purposes. This procedure, based on the linearization of the system internal dynamics about equilibrium con_gurations, can be applied to a generic robot suspended by any number of cables comprised between 2 and 5. The kinematics, dynamics, stability and stiffness of the robot free motion are investigated in detail. The validity of the proposed method is demonstrated by experiments on 6-DoF prototypes actuated by 2, 3, and 4 cables. Additionally, in order to highlight the interest in a robotic context, this modelling strategy is applied to the trajectory planning of a 6-DoF 4-cable CDPR by means of a frequency-based method (multi-mode input shaping), and the latter is experimentally compared with traditional non-frequency-based motion planners

    Rest-to-Rest Trajectory Planning for Underactuated Cable-Driven Parallel Robots

    Get PDF
    This article studies the trajectory planning for underactuated cable-driven parallel robots (CDPRs) in the case of rest-to-rest motions, when both the motion time and the path geometry are prescribed. For underactuated manipulators, it is possible to prescribe a control law only for a subset of the generalized coordinates of the system. However, if an arbitrary trajectory is prescribed for a suitable subset of these coordinates, the constraint deficiency on the end-effector leads to the impossibility of bringing the system at rest in a prescribed time. In addition, the behavior of the system may not be stable, that is, unbounded oscillatory motions of the end-effector may arise. In this article, we propose a novel trajectory-planning technique that allows the end effector to track a constrained geometric path in a specified time, and allows it to transition between stable static poses. The design of such a motion is based on the solution of a boundary value problem, aimed at a finding solution to the differential equations of motion with constraints on position and velocity at start and end times. To prove the effectiveness of such a method, the trajectory planning of a six-degrees-of-freedom spatial CDPR suspended by three cables is investigated. Trajectories of a reference point on the moving platform are designed so as to ensure that the assigned path is tracked accurately, and the system is brought to a static condition in a prescribed time. Experimental validation is presented and discussed

    Persistent rigid-body motions and Study's "Ribaucour" problem

    Get PDF
    In this work we show that the concept of a one-parameter persistent rigid-body motion is a slight generalisation of a class of motions called Ribaucour motions by Study. This allows a simple description of these motions in terms of their axode surfaces. We then investigate other special rigid-body motions, and ask if these can be persistent. The special motions studied are line-symmetric motions and motions generated by the moving frame adapted to a smooth curve. We are able to find geometric conditions for the special motions to be persistent and, in most cases, we can describe the axode surfaces in some detail. In particular, this work reveals some subtle connections between persistent rigid-body motions and the classical differential geometry of curves and ruled surfaces

    Optimal Design for Vibration Mitigation of a Planar Parallel Mechanism for a Fast Automatic Machine

    Get PDF
    This work studies a planar parallel mechanism installed on a fast-operating automatic machine. In particular, the mechanism design is optimized to mitigate experimentally-observed vibrations. The latter are a frequent issue in mechanisms operating at high speeds, since they may lead to low-quality products and, ultimately, to permanent damage to the goods that are processed. In order to identify the vibration cause, several possible factors are explored, such as resonance phenomena, elastic deformations of the components, and joint deformations under operation loads. Then, two design optimization are performed, which result in a significant improvement in the vibrational behaviour, with oscillations being strongly reduced in comparison to the initial design

    Workspace Computation of Planar Continuum Parallel Robots

    Get PDF
    Continuum parallel robots (CPRs) comprise several flexible beams connected in parallel to an end-effector. They combine the inherent compliance of continuum robots with the high payload capacity of parallel robots. Workspace characterization is a crucial point in the performance evaluation of CPRs. In this paper, we propose a methodology for the workspace evaluation of planar continuum parallel robots (PCPRs), with focus on the constant-orientation workspace. An explorative algorithm, based on the iterative solution of the inverse geometrico-static problem is proposed for the workspace computation of a generic PCPR. Thanks to an energy-based modelling strategy, and derivative approximation by finite differences, we are able to apply the Kantorovich theorem to certify the existence, uniqueness, and convergence of the solution of the inverse geometrico-static problem at each step of the procedure. Three case studies are shown to demonstrate the effectiveness of the proposed approach

    Motion Interpolation in Lie Subgroups and Symmetric Subspaces

    Get PDF
    We show that a map defined by Pfurner, Schrocker and Husty, mapping points in 7-dimensional projective space to the Study quadric, is equivalent to the composition of an extended inverse Cayley map with the direct Cayley map, where the Cayley map in question is associated to the adjoint representation of the group SE(3). We also verify that subgroups and symmetric subspaces of SE(3) lie on linear spaces in dual quaternion representation of the group. These two ideas are combined with the observation that the Pfurner-Schrocker-Husty map preserves these linear subspaces. This means that the interpolation method proposed by Pfurner et al can be restricted to subgroups and symmetric subspaces of SE(3)

    Parallel Robots with Homokinetic Joints:The Zero-Torsion Case

    Get PDF
    A two degree-of-freedom (DOF) homokinetic joint provides the freedom of spatially pointing directions without spinning (zero torsion). In this paper, we investigate structural synthesis of several classes of zero-torsion parallel robots using homokinetic joints

    Sloshing dynamics estimation for liquid-filled containers performing 3-dimensional motions: modeling and experimental validation

    Get PDF
    Many industrial applications require the displacement of liquid-filled containers on planar paths (namely, paths on a horizontal plane), by means of linear transport systems or serial robots. The movement of the liquid inside the container, known as sloshing, is usually undesired, thus there is the necessity to keep under control the peaks that the liquid free-surface exhibits during motion. This paper aims at validating a model for estimating the liquid sloshing height, taking into account 2-dimensional motions of a cylindrical container occurring on a horizontal plane, with accelerations up to 9.5 m/s2. This model can be exploited for assessment or optimization purposes. Experiments performed with a robot following three paths, each one of them with different motion profiles, are described. Comparisons between experimental results and model predictions are provided and discussed. Finally, the previous formulation is extended in order to take into account the addition of a vertical acceleration, up to 5 m/s2. The resulting 3-dimensional motions are experimentally validated to prove the effectiveness of the extended technique
    corecore